Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).

Identifieur interne : 004725 ( Main/Exploration ); précédent : 004724; suivant : 004726

Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).

Auteurs : R L Lindroth [États-Unis] ; B J Kopper ; W F Parsons ; J G Bockheim ; D F Karnosky ; G R Hendrey ; K S Pregitzer ; J G Isebrands ; J. Sober

Source :

RBID : pubmed:11789920

Descripteurs français

English descriptors

Abstract

Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.

DOI: 10.1016/s0269-7491(01)00229-9
PubMed: 11789920


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).</title>
<author>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison 53706, USA. lindroth@entomology.wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison 53706</wicri:regionArea>
<wicri:noRegion>Madison 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kopper, B J" sort="Kopper, B J" uniqKey="Kopper B" first="B J" last="Kopper">B J Kopper</name>
</author>
<author>
<name sortKey="Parsons, W F" sort="Parsons, W F" uniqKey="Parsons W" first="W F" last="Parsons">W F Parsons</name>
</author>
<author>
<name sortKey="Bockheim, J G" sort="Bockheim, J G" uniqKey="Bockheim J" first="J G" last="Bockheim">J G Bockheim</name>
</author>
<author>
<name sortKey="Karnosky, D F" sort="Karnosky, D F" uniqKey="Karnosky D" first="D F" last="Karnosky">D F Karnosky</name>
</author>
<author>
<name sortKey="Hendrey, G R" sort="Hendrey, G R" uniqKey="Hendrey G" first="G R" last="Hendrey">G R Hendrey</name>
</author>
<author>
<name sortKey="Pregitzer, K S" sort="Pregitzer, K S" uniqKey="Pregitzer K" first="K S" last="Pregitzer">K S Pregitzer</name>
</author>
<author>
<name sortKey="Isebrands, J G" sort="Isebrands, J G" uniqKey="Isebrands J" first="J G" last="Isebrands">J G Isebrands</name>
</author>
<author>
<name sortKey="Sober, J" sort="Sober, J" uniqKey="Sober J" first="J" last="Sober">J. Sober</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11789920</idno>
<idno type="pmid">11789920</idno>
<idno type="doi">10.1016/s0269-7491(01)00229-9</idno>
<idno type="wicri:Area/Main/Corpus">004696</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004696</idno>
<idno type="wicri:Area/Main/Curation">004696</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004696</idno>
<idno type="wicri:Area/Main/Exploration">004696</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).</title>
<author>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison 53706, USA. lindroth@entomology.wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison 53706</wicri:regionArea>
<wicri:noRegion>Madison 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kopper, B J" sort="Kopper, B J" uniqKey="Kopper B" first="B J" last="Kopper">B J Kopper</name>
</author>
<author>
<name sortKey="Parsons, W F" sort="Parsons, W F" uniqKey="Parsons W" first="W F" last="Parsons">W F Parsons</name>
</author>
<author>
<name sortKey="Bockheim, J G" sort="Bockheim, J G" uniqKey="Bockheim J" first="J G" last="Bockheim">J G Bockheim</name>
</author>
<author>
<name sortKey="Karnosky, D F" sort="Karnosky, D F" uniqKey="Karnosky D" first="D F" last="Karnosky">D F Karnosky</name>
</author>
<author>
<name sortKey="Hendrey, G R" sort="Hendrey, G R" uniqKey="Hendrey G" first="G R" last="Hendrey">G R Hendrey</name>
</author>
<author>
<name sortKey="Pregitzer, K S" sort="Pregitzer, K S" uniqKey="Pregitzer K" first="K S" last="Pregitzer">K S Pregitzer</name>
</author>
<author>
<name sortKey="Isebrands, J G" sort="Isebrands, J G" uniqKey="Isebrands J" first="J G" last="Isebrands">J G Isebrands</name>
</author>
<author>
<name sortKey="Sober, J" sort="Sober, J" uniqKey="Sober J" first="J" last="Sober">J. Sober</name>
</author>
</analytic>
<series>
<title level="j">Environmental pollution (Barking, Essex : 1987)</title>
<idno type="ISSN">0269-7491</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Betula (chemistry)</term>
<term>Betula (drug effects)</term>
<term>Betula (physiology)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Ecosystem (MeSH)</term>
<term>Forestry (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Ozone (pharmacology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (physiology)</term>
<term>Salicaceae (chemistry)</term>
<term>Salicaceae (drug effects)</term>
<term>Salicaceae (physiology)</term>
<term>Starch (metabolism)</term>
<term>Tannins (metabolism)</term>
<term>Trees (chemistry)</term>
<term>Trees (drug effects)</term>
<term>Trees (physiology)</term>
<term>United States (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amidon (métabolisme)</term>
<term>Arbres (composition chimique)</term>
<term>Arbres (effets des médicaments et des substances chimiques)</term>
<term>Arbres (physiologie)</term>
<term>Azote (métabolisme)</term>
<term>Betula (composition chimique)</term>
<term>Betula (effets des médicaments et des substances chimiques)</term>
<term>Betula (physiologie)</term>
<term>Carbone (métabolisme)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Ozone (pharmacologie)</term>
<term>Salicaceae (composition chimique)</term>
<term>Salicaceae (effets des médicaments et des substances chimiques)</term>
<term>Salicaceae (physiologie)</term>
<term>Science forêt (MeSH)</term>
<term>Tanins (métabolisme)</term>
<term>Écosystème (MeSH)</term>
<term>États-Unis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
<term>Starch</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Betula</term>
<term>Plant Leaves</term>
<term>Salicaceae</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arbres</term>
<term>Betula</term>
<term>Feuilles de plante</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betula</term>
<term>Plant Leaves</term>
<term>Salicaceae</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Arbres</term>
<term>Betula</term>
<term>Feuilles de plante</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amidon</term>
<term>Azote</term>
<term>Carbone</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Betula</term>
<term>Feuilles de plante</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Betula</term>
<term>Plant Leaves</term>
<term>Salicaceae</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Forestry</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Science forêt</term>
<term>Écosystème</term>
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11789920</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0269-7491</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>115</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2001</Year>
</PubDate>
</JournalIssue>
<Title>Environmental pollution (Barking, Essex : 1987)</Title>
<ISOAbbreviation>Environ Pollut</ISOAbbreviation>
</Journal>
<ArticleTitle>Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).</ArticleTitle>
<Pagination>
<MedlinePgn>395-404</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>R L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin, Madison 53706, USA. lindroth@entomology.wisc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kopper</LastName>
<ForeName>B J</ForeName>
<Initials>BJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parsons</LastName>
<ForeName>W F</ForeName>
<Initials>WF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bockheim</LastName>
<ForeName>J G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karnosky</LastName>
<ForeName>D F</ForeName>
<Initials>DF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hendrey</LastName>
<ForeName>G R</ForeName>
<Initials>GR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pregitzer</LastName>
<ForeName>K S</ForeName>
<Initials>KS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Isebrands</LastName>
<ForeName>J G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sober</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Pollut</MedlineTA>
<NlmUniqueID>8804476</NlmUniqueID>
<ISSNLinking>0269-7491</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-25-8</RegistryNumber>
<NameOfSubstance UI="D013213">Starch</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="N">Betula</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="N">Forestry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031308" MajorTopicYN="N">Salicaceae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013213" MajorTopicYN="N">Starch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N">United States</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11789920</ArticleId>
<ArticleId IdType="pii">S0269-7491(01)00229-9</ArticleId>
<ArticleId IdType="doi">10.1016/s0269-7491(01)00229-9</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bockheim, J G" sort="Bockheim, J G" uniqKey="Bockheim J" first="J G" last="Bockheim">J G Bockheim</name>
<name sortKey="Hendrey, G R" sort="Hendrey, G R" uniqKey="Hendrey G" first="G R" last="Hendrey">G R Hendrey</name>
<name sortKey="Isebrands, J G" sort="Isebrands, J G" uniqKey="Isebrands J" first="J G" last="Isebrands">J G Isebrands</name>
<name sortKey="Karnosky, D F" sort="Karnosky, D F" uniqKey="Karnosky D" first="D F" last="Karnosky">D F Karnosky</name>
<name sortKey="Kopper, B J" sort="Kopper, B J" uniqKey="Kopper B" first="B J" last="Kopper">B J Kopper</name>
<name sortKey="Parsons, W F" sort="Parsons, W F" uniqKey="Parsons W" first="W F" last="Parsons">W F Parsons</name>
<name sortKey="Pregitzer, K S" sort="Pregitzer, K S" uniqKey="Pregitzer K" first="K S" last="Pregitzer">K S Pregitzer</name>
<name sortKey="Sober, J" sort="Sober, J" uniqKey="Sober J" first="J" last="Sober">J. Sober</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004725 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004725 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11789920
   |texte=   Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11789920" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020